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28805 Alcalá de Henares (Madrid), Spain.

e-mail: mdolores@aut.uah.es

Abstract—Over the past 20 years, there has been much work
in the area of model-based diagnosis (MBD). By this we
mean diagnosis systems arising from Computer Science or
Artificial Intelligence approaches where a generic software
engine is developed to address a large class of diagnosis prob-
lems [1], [2]. Later models are created to apply the engine to
a specific problem. These techniques are very attractive, sug-
gesting a vision of machines that repair themselves, reduced
costs for all kinds of endeavors, spacecraft that continue their
missions even when failing, and so on. This promise in-
spired a broad range of activity, including our involvement
over several years in flying the Livingstone and Livingstone
2 on-board model-based diagnosis and recovery systems as
experiments on two spacecraft [3], [4], [5], [6], [7].

While a great deal was learned through a variety of applica-
tions to simulators, testbeds and flight experiments, no project
adopted the technology as an operation tool and the expected
benefits have not yet come to fruition. This led us to ask what
are the costs of using MBD for the operational scenarios we
encountered, what are the benefits, and how do we approach
the question of whether the benefits outweigh the costs? How
are missions today approaching fault diagnosis and recovery
during operations? If we characterize the cost and benefits
of using MBD, how would it compare with traditional ways
of making a system more robust? How did expectations for
MBD compare to benefits seen in the field and why?

The literature does provide existing cost models for related
endeavors such as integrated vehicle health management [8],
[9], [10]. It also provides excellent narratives of why projects
chose not to use MBD after considering it [11]. However,
we believe that this paper is the first to unpack and discuss
the cost, benefit and risk factors that impact the net value of
model-based diagnosis and recovery. We use experience with
systems such as Livingstone as an example, so our focus is
on-board model-based diagnosis and recovery, but we believe
many of the insights and remaining questions on the costs and
benefits are applicable to other diagnosis applications.

While the analysis is not yet mature enough to provide a
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quantitative model of when on-board model-based diagno-
sis would be an effective choice, it lays out the cost/benefit
proposition and identifies several disconnects that we believe
prevent adoption as an operational tool. While we do not sug-
gest metrics for every cost, benefit and risk factor we identify,
we do discuss where each factor arises in development or op-
erations and how model-based diagnosis and recovery tends
to leverage or exacerbate each. As such we believe the anal-
ysis is of use to those developing MBD or related techniques
and those who may employ them. It also serves as one exam-
ple of how final impact on the customer’s process may come
to differ from expectations based on technical capability.

In this paper we present a cost/benefit analysis for MBD,
using expectations and experiences with Livingstone as an
example. We provide an overview of common techniques
for making spacecraft robust, citing fault protection schemes
from recent missions [12], [13]. We lay out the cost, bene-
fit and risk advantages associated with on-board MBD, and
use the examples to probe each expected advantage in turn.
We conclude our analysis with a summary of our method for
analyzing the costs and benefits in a particular domain, and
encourage others to come forward with analyses of costs and
benefits for fielded systems. Finally, we discuss related work
both in terms of similar analyses and fielded systems.
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1. INTRODUCTION

Our experience and observations upon developing and de-
ploying model-based diagnosis (MBD) and other model-
based technologies to a variety of testbeds, flight experiments
and spacecraft operations led us to explore why our expec-
tations for the benefits and impact of MBD upon spacecraft
operations have not yet been matched by the effective bene-
fits seen in the field. This in turn led to a series of questions.
What at are the costs of using MBD, what are the benefits,
and how can we approach the question of whether the bene-
fits outwight the costs? How are missions today approaching
fault diagnosis and recovery during operations? If we charac-
terize the cost of using MBD, how would MBD compare in
a cost/benefit tradeoff with traditional ways of making a sys-
tem more robust? Is there something about planning, in many
ways a similar technology, that has made it more successful,
and what does that tell us?

The paper is organized as follows. In the next section, we
present a brief description of the spacecraft fault protection
problem and common practice for addressing it, followed by a
very brief overview of the Livingstone model-based diagnosis
and recovery system. We then consider Livingstone’s impact
on spacecraft fault protection practice, both in terms of the
impact we expected based on its capabilities and the impact
we have observed in the subsequent years. To understand this
discrepancy, we introduce a set of factors we believe influ-
ence the adoption rate of this technology and perhaps similar
on-board technologies. We express net impact as a product of
expected value, cost and risk rather than simply capabilities.
For each of these, we identify aspects of model-based diag-
nosis that contribute, and how we would evaluate them using
the Livingstone experience as an example. In some cases we
identify outstanding problems or offer brief suggestions about
what could be done to change the equation.

In the Conclusion we end our discussion of net impact by
summarizing our own experience with the cost, risk and value
tradeoff of for model based diagnosis, though we encourage
the reader to consider their own analysis of this or other tech-
nologies using a similar breakdown of net impact. In Related
Work, we discuss a small set of systems that are model-based,
or pertain to diagnosis and recovery, or have been fielded in
operational use, our ultimate interest being a system that is all
three. We briefly discuss our understanding of why model-
based diagnosis technology has not had the success of related
model-based technologies in terms of our net impact factors.

2. SPACECRAFT FAULT PROTECTION

Before discussing model-based diagnosis we briefly discuss
spacecraft fault protection for the purpose of comparison.
The primary purpose of fault protection is to ensure that
anomalies or operational problems encountered during oper-
ation of the spacecraft do not result in permanent reduction
in the spacecraft’s capabilities or loss of the mission itself.
As Neilson explains in an excellent overview of the fault pro-

tection system for the Mars Exploration Rovers (MER), fault
protection is an engineering process that incorporates robust-
ness to faults into spacecraft hardware, software, systems en-
gineering and operations [12]. All of these systems are engi-
neered to work together to reduce the likelihood that any rea-
sonably plausible contingency will result in permanent loss of
mission capabilities. This paper is largely concerned with on-
board software for active fault detection, isolation and reco-
very (FDIR). We note though that the on-board system is just
one aspect of the overall fault protection engineering process,
and that the on-board system for protecting the spacecraft is
typically a mix of hardware and software. Traditionally, the
fault protection engineering process is driven by fault modes,
effects and criticality analysis (FMECA). This process typi-
cally determines the possible faults of a system or subsystem,
some notion of their likelihoods, and an analysis of the im-
pact of each. If the likelihood of a fault is deemed sufficiently
high and the impact sufficiently negative, the analysis would
also include how the fault would be detected and what the
appropriate response would be.

The appropriate response to a fault may depend upon the
phase of the mission. We use the term critical phase of a mis-
sion to mean periods of a mission where the spacecraft must
take specific actions (a critical sequence) or loss or serious
degradation of the mission will result. For example during
the entry, descent and landing (EDL) sequence each MER
rover entered the Martian atmosphere at over 10,000 miles
per hour. At specific times or altitudes it jettisoned a protec-
tive shell, deployed airbags, and the like. Failure to execute a
step in this six minute sequence would end the mission. We
say the system must fail operational in that any failure that
occurs must be taken into account by the fault protection ap-
proach, for example by switching between redundant subsys-
tems, to allow execution to continue. Accordingly, during de-
velopment of the spacecraft an enormous amount of attention
is given to the precise critical sequence the spacecraft will
execute, which failures are likely, how they will be detected,
and how they will be immediately mitigated. Since response
must be timely, it must be available on-board. This may in-
volve something as simple as a table mapping observed sen-
sor values to commands that should be issued in response, for
example to switch to a redundant backup. For very complex
critical sequences on large spacecraft, a much more elaborate
method of determining responses may be developed, such as
for the Cassini orbital insertion at Saturn [14].

In a non-critical phase, it is still possible to damage or lose
the mission due to a fault, but there isn’t the added constraint
of having to execute a critical sequence. Thus typical fault
protection systems tend to focus on mitigating or postponing
the impact of the fault by changing the spacecraft’s state or
behavior. Often if a serious problem is detected, the space-
craft is placed into a safe mode where the only actions taken
are those that maintain the spacecraft in a quiescent state. For
example on the MER rovers, draining the battery risks not
being able to heat the rover during the cold Martian night and
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not being able to communicate with Earth when expected.
The system level MER fault protection includes a hardware
battery controller that disconnects the batteries should a seri-
ous hardware or software failure begin to drain them. In this
case, the system’s heaters, solar panels, and flight software
work together to ensure the rover does nothing but stay warm
and wake once during the day to contact Earth using very
few hardware and software subsystems and minimal power.
If the situation appears to be less grievous or more local-
ized, then a less drastic response may be taken at first. On
the MER rovers, subsystem behaviors incorporate subsystem
level fault protection [15]. If the rover’s arm draws more than
the allowed current during use, it is marked failed. The arm
behavior ignores any subsequent requests to use the arm, and
the rover driving behavior is disabled if the arm is not stowed
away. Routine communication with Earth and other tasks that
do not involve the arm continue as normal. During the cycle
of downlinking telemetry and uplinking sequences (typically
the next day), ground operators can inspect the telemetry and
debug the arm before re-enabling it. This system has pro-
tected the MER spacecraft/rovers for approaching five years.
A great summary of the anomalies and faults encountered by
the rovers in the first 780 sols (Martian days) of operation is
available [16].

The approach of safing the entire spacecraft or select subsys-
tems when faults are suspected has the advantage that one
need not know exactly which fault is causing the operational
problem. If the rover arm exceeds an operational current
limit, use of the arm ceases, which applies for a limitless
number of reasons the arm might be malfunctioning from a
motor short to a rock stuck in an actuator. Similarly, if the
battery is being dangerously drained, the flight software may
shut down it’s activities, but at some point if the situation per-
sists the hardware will effectively turn off the rover and restart
it in a fresh, quiescent state when solar power is available.

This fault protection approach is to carefully engineer the
robust but minimal fail operational capabilities needed for
critical periods, and otherwise engineer hardware, software
and operations so the spacecraft can be put in a safe state in
response to plausible anomalies. This characterizes a wide
range of fault protection systems that have been flown. The
remainder of this paper is about experience gained attempting
to improve upon this approach using model-based diagnosis
technology. The intent was to provide greater spacecraft au-
tonomy and robustness, greater science return from missions,
reduced operations costs, reduced analysis cost for a mission,
and reduced flight software development cost.

The next section describes Livingstone and Livingstone 2,
two model based diagnosis systems that have been flown as
experiments on-board NASA spacecraft as well as demon-
strated on a number of testbeds. The following section de-
scribes Livingstone was expected to provide the benefits de-
scribed above. Later, we describe why we believe these ben-
efits were not realized, and provide some analysis of where
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Figure 1. Model-based Diagnosis and Recovery

we believe the problem lies.

3. THE LIVINGSTONE SYSTEM

Over the past 20 years, there has been much work in the area
of model-based diagnosis (MBD). By diagnosis, we mean the
problem of observing a mechanical, software or other system
and determining what failures, if any, its internal components
have suffered. For example, if our car won’t start but we ob-
serve that the lights work, we might infer that the problem
is the starter and not the battery. By model-based diagnosis,
we mean diagnostic systems arising from Computer Science
or Artificial Intelligence approaches where a generic software
engine or set of principles is developed in the hope of address-
ing a large class of diagnosis problems [1], [2]. Later, models
that adapt the generic engine to a specific diagnosis problem
(e.g., the automotive starting system) are created. The diag-
nostic engine is given the model and fed observations from
sensors on the mechanical system being diagnosed, and is in-
tended to automatically infer which components of the sys-
tem are failed, and perhaps in what manner. The particular
representation and algorithms used are beyond the scope of
this paper, but an excellent survey of the seminal work in this
field can be found in [17].

The Livingstone system [3], [4] builds on this work, and is
meant to monitor execution of commands, diagnose failures
and provide recovery actions for complex systems such as
spacecraft. Figure 1 illustrates its operation at an idealized,
schematic level. We use the Cassini spacecraft as a bench-
mark example, as was the norm in the Livingstone papers.
To avoid a persistent confusion, we note Livingstone was run
against a simulation of the Cassini spacecraft and not as a
part of the Cassini mission. Livingstone requires a high level
model of the components of the spacecraft and their opera-
tion. During operation, Livingstone is fed the stream of com-
mands that are being given to the spacecraft and the read-
ings from sensors that relay the internal state of the space-
craft (e.g. switch status bits, temperature sensors, pressure
transducers, etc.). Livingstone uses the model of the space-
craft’s components and the command stream to predict the
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values of the sensors that should result from the commands
assuming no components are failed. If there is a discrepancy
between the predicted and observed sensors, then a failure is
assumed. Livingstone uses the model of the components to
simulate different combinations of failures. It uses a diagno-
sis algorithm to quickly focus on the combination of failures
that would predict the sensor values that are being observed.
This combination of component failures is the diagnosis. In
case of failure, Livingstone is able to use the same predictive
model to suggest commands that achieve a desired property
(e.g. engine is receiving fuel) and thus mitigate the failure.
It can for example infer that one should switch between the
failed component and a similar set of components that per-
forms the same function. For example, consider the Cassini
main propulsion system in Figure 2. The purpose of the sys-
tem is for the helium tank to pressurize the oxidizer tank and
fuel tank in order to push fuel and oxidizer to exactly one
of the engines, where it is ignited to create thrust. Owing to
Cassini’s decade long mission, the system has many redun-
dant paths between the various tanks and a backup engine.
Valves in parallel allow a second path in case a valve sticks
shut. Valves in series allow a path to be turned off if a valve
sticks open. When run against a simulation of this propul-
sion system, Livingstone’s task was to monitor the commands
given to the valves and infer if the pressure readings were
consistent with the expected state of the valves. If not, Liv-
ingstone was able to determine the smallest number of valves
to open or close to ensure oxidizer and fuel could reach ex-
actly one engine. Thus Livingstone could effectively manage
the configuration of the system so that it always produced
thrust when desired even in the face of failures.

4. EXPECTED BENEFITS

The promise of a system like Livingstone flows from the con-
cept that we describe the nominal and (perhaps multiple) fail-
ure behaviors of each type of component, and how the compo-
nents are interconnected. Livingstone then infers the system-
wide behavior given any combination of nominal and failed
components and any sequence of commands. Thus the user
models that a valve can be open and allow fluid flow, or closed
and stop fluid flow, or stuck open or stuck closed, and can ar-
range valve combinations far more complex than the Cassini
model shown. Livingstone in turn performs the system-wide
reasoning during operations to start and stop the engines (or
achieve any other state described by the model) in the face
of multiple valves sticking closed or open. If we could use

MBD to replace manual reasoning through system wide in-
teractions under a multitude of scenarios with describing the
local behavior of components, we envisioned a wide range of
benefits.

• Significantly lower costs for critical phases
The fail-operational response needed during a critical phases
would be inferred from the model on-line during execution of
the critical phase. Thus, we would reduce manual analysis of
how spacecraft subsystems would interact during an anomaly
that was needed to engineer static fail-operational responses.
Effort could be shifted to testing the responses of the infer-
ence system.
• Higher mission return
By inferring fail-operational responses for any desired state
of the spacecraft, rather than manually engineering them for
specific critical sequences, we could fail operational even in
non-critical periods. During a fault, rather than safing and
waiting for intervention, the fault protection system would
diagnose which component was failed. It would return the
spacecraft to an operational state by reconfiguring redundant
systems, resetting components, or cancelling only those ac-
tivities that depended upon failed components. Routine oper-
ations would continue without intervention from the ground,
increasing science return and decreasing operations costs.
• Greater robustness than traditional fault protection
The on-board diagnoser could potentially infer diagnoses of
double and triple failures and suggest workarounds, where a
traditional fault protection might typically have pre-computed
responses for single failures or certain likely and critical
anomalies involving multiple failures.
• Reduce fault protection implementation costs
Rather than use a custom written fault protection and safing
system, the spacecraft fault protection system would employ
a re-usable diagnosis engine that inferred diagnostic and re-
covery responses on the fly. Thus a decrease in flight software
costs was projected.

5. LIVINGSTONE FLIGHT EXPERIENCE

A large number of talented people developed Livingstone and
L2 applications for a wide variety of systems, which allowed
us to gain the experience upon which this paper is based. Ta-
ble 1 lists applications developed for simulators, testbeds and
two flight experiments, along with the year, and the number
of different failures modeled. Where available, the number of
person months spent developing the Livingstone model and
person months developing the entire application (models, sig-
nal conditioning code, integration, etc) is shown.

Livingstone was chosen in 1996 to be a part of the Remote
Agent spacecraft autonomy architecture [18]. In May 1999
it was flown on the Deep Space 1 spacecraft as a technol-
ogy experiment [5]. The first author gained direct experi-
ence with model-based diagnosis technology by doing Liv-
ingstone development, modeling of the Deep Space 1 (DS-
1) spacecraft, and participating in mission operations during
the experiment. Livingstone was activated on DS-1 for a 20
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System Model Types
Effort Effort of

Type Domain Subystem Year Months Months Components

Simulator Cassini Propulsion Liv. 1996
Flight Exp Deep Space 1 Attitude control, Liv. 1998 96 36 12

switches
Testbed ISRU Chemical reactor Liv. 1998 96 32
Testbed Interferometry Optical bench Liv. 1999
Simulator micro spacecraft Liv. 2001
Simulator rover Drive systrem Liv. 2001
Simulator X-34 Propulsion L2 2002 26
Simulator X-37 Electronics L2 2002 9 5 18
Flight Exp Earth Orbiter 1 L2 2003 12 2.8

Table 1. Livingstone and Livingstone 2 Applications

hour test and a 6 hour test. During these tests, the Remote
Agent was run on top of the DS-1 flight software, which in-
cluded a fault protection system. During the test Livingstone
was fed simulated sensor readings consistent with a set of
four pre-determined failure scenarios: switch position indica-
tor failed, camera power switch stuck on, science instrument
not responding and thruster stuck closed. In the first case,
Livingstone correctly ignored the sensor, and in the remain-
ing cases recommended recoveries of re-trying the command,
power-cycling the instrument, and switching thruster control
modes, respectively.

Subsequently, we developed the follow-on Livingstone 2 sys-
tem (L2), with several technical improvements [4]. With L2
and the associated modeling tools, our experience applying
model-based diagnosis and recovery systems to spacecraft
greatly expanded. L2 was flown as a technology experiment
on the Earth Observer 1 spacecraft (EO-1) spacecraft, again
flying on top of the existing fault protection system. L2 was
activated on EO-1 for a total of 143 days in 2004 and 2005
and diagnosed 13 simulated failures [7]. Flight experiments
for the X-34 and X-37 spacecraft also were developed, though
those vehicles were never flown [6].

In addition to these flight experiments, Livingstone or L2
was applied to a Mars in-situ propellant production testbed
(ISRU) at Kennedy Space Center, a testbed for the Space
Inteferometry Mission at the Jet Propulsion Laboratory, the
Bio-Plex Mars habitat testbed at Johnson Space Center, a
testbed for the PSA micro spacecraft [19], and a rover
testbed [20]. All of these efforts generated a great deal of
knowledge about the needs and requirements for advanced
on-board fault protection.

6. LIVINGSTONE’S IMPACT

A great deal was learned from the efforts of the many talented
teams that used Livingstone. In retrospect though, it’s fair to
say that MBD did not transform, or even impact how fault
protection is done on NASA missions. To our knowledge, no

NASA spacecraft has used Livingstone or any system like it
as a part of its fault protection system, and after the DS-1 and
EO-1 experiments, there have yet to be additional research-
funded flight experiments. This begs the question of why we
did not observe the wide range of benefits we expected from
applying model-based diagnosis and recovery to spacecraft
operations, and why there was no ’mission pull’ and adoption
of the technology.

It is tempting to explain the lack of penetration by imagining
missions are averse to incorporating new technologies. Cer-
tainly revolutionary approaches are taken all the time. Con-
sider the airbag landing system used on PATHFINDER and
MER. Perhaps there is some hesitance to use unfamiliar or
model-based software. Consider the case of planning and
scheduling technology. Coincidentally, Livingstone flew with
the HSTS planner during the Remote Agent experiment, and
L2 flew with the CASPER planner on EO-1. At a high level,
planners are similar to Livingstone in that they comprise a
generic inference engine and a model used to adapt it to a
problem. A planner chooses actions to take to achieve a goal,
rather than failures to explain a symptom, but the algorithms
and models are similar in the grand scheme of things. As
described in Related Work, HSTS evolved into ground-based
tools that have generated thousands of plans for the MER
rovers and are scheduled for follow on missions. CASPER be-
came an operational tool on EO-1, continuing to run on-board
for years, plan over 100,000 goals to date, and save millions
of dollars in operating costs [21]. Thus missions are willing
to adopt new, model-based software technologies.

The decision by a mission to adopt a technology as a base-
line tool is a combination of the value, cost and risk given
the characteristics of that particular mission so we began to
consider those terms. The three are intertwined, as a mission
may make a significant investment to buy down risk, as il-
lustrated by the inclusion of a backup engine on Cassini, and
conversely a useful mission feature that provides value may
be abandoned if the cost cannot be kept under control. In
these terms, we believe it’s relatively easy to understand the
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lack of penetration of model-based diagnosis and recovery.
We provide an overview before a detailed analysis.

Consider the critical phases of a mission and the proposal to
use model-based diagnosis and recovery to provide the re-
quired fail operational capability. Added value and reduced
cost from employing MBD have not be clearly shown, but
they would have to be incredibly high to offset the risk of
not being able to verify in advance exactly how the spacecraft
was going to respond when an incorrect response will result
in mission loss. Thus we will argue the risk of MBD during
critical phases is high, and the value is unclear.

Consider the non-critical phases of a mission and the pro-
posal to add fail operational capability. Typically, spacecraft
go into safe mode very rarely. When they do, operators typi-
cally would like to understand what has occurred before con-
tinuing operations. Surveying real mission anomalies also re-
veals that few are failures that a priori we would have mod-
eled and been able to recover. Thus we will argue the value
provided by MBD during non-critical phases is not high, es-
pecially when considered against the cost and risk involved.

In the next sections, we present a method for organizing the
factors we identified to determine whether the value of a so-
phisticated on-board diagnosis and recovery system (model-
based or not) is worth the cost and risk involved, depending
on the particular characteristics of the application. We also
support our analysis of the costs and benefits of model-based
diagnosis using the MER and DS-1 missions as examples.

7. THE COST/BENEFIT TRADEOFF

As technology developers, there is a natural tendency to fo-
cus on the capabilities of a technology, such as MBD’s ability
to find diagnoses and make recoveries. In retrospect, the post
hoc operational value of a technology to a mission is more
complex. The value of a diagnosis captured by our models,
for example, is only realized if that particular failure occurs
and it is correctly diagnosed. Similarly, the cost of model
development doesn’t reflect cost increases or savings during
mission analysis, testing or operations. The benefit provided
by continuing to operate must be balanced with the risk of in-
curring further damage to the spacecraft. We therefore began
to enumerate these factors and tried clarify our own thinking
about them, hoping in the best case of giving potential cus-
tomers a way of “unpacking” the problem of estimating the
value of MBD in their circumstances. This raised the issue of
how to have an intelligent discussion about this estimate when
many of the factors needed to make the estimate are unknown
a priori (e.g. whether a failure will eventually occur) or may
be contentious.

Here, we were directly inspired by the Drake Equation [22],
[23]. In the 1950’s, Frank Drake began estimating the number
of intelligent civilizations in the galaxy. He cleverly formu-
lated his estimate so the terms mirror the steps required for a
planet to exist with a civilization on it: the number of stars in

the galaxy, times the percentage that have planets, times the
percentage in which life arises at all, and so on. The beauty
and perhaps the point is one can agree with or discuss the
structure of the Drake equation while completely disagreeing
with the estimate Drake makes. The equation itself is a tool
for thinking about the factors impacting the problem, focus-
ing discussion, and reasoning about how changes in various
assumptions influence the outcome. Thus, with tongue-in-
cheek apologies to Frank Drake, may introduce the Kurien-
Moreno equation of the net value of on-board model-based
diagnosis, and perhaps other technologies, as shown in Fig-
ure 3.

Equation 1 of Figure 3 expresses the simple notion that the ex-
pected net value of using MBD over the life of a mission de-
pends upon the expected value that the technology provides,
minus the additional risks of using it and the cost of deploy-
ing it. By expected value Vmbd, we mean the product of how
much value MBD provides in a given situation, and the likeli-
hood of that situation arising in practice. By cost due to risk,
Crisk, we mean the loss of mission or capability that could
occur, and the increase or decrease in likelihood that MBD
causes. Finally, by cost of deployment, Cdep we mean the
cost increase or decrease resulting from use of MBD in the
on-board fault protection system.

To promote discussion, Equation 2 unrolls each of these sim-
ple terms in a way that mirrors the events that will unfold
to determine the value of an MBD application. For exam-
ple, one term in expected value, Vmbd, is the value, Vr to
the mission of having the immediate diagnosis and recovery
provided by MBD. The other terms are the likelihood that a
particular failure occurs, the likelihood of the diagnoser hav-
ing a model of the failure and making the correct diagnosis,
and the likelihood that the diagnoser is able to find a recovery
that improves the state of the spacecraft. Each of these is a
term we can discuss when evaluating whether MBD is a good
fit for a particular mission, or when thinking about what we
can do to make MBD more attractive to missions.

In the subsequent sections, we expand the expected value,
risk and cost terms as shown in Equation 2. We introduce the
factors we have identified as contributing to each of the terms,
and describe how our experience with model-based diagnosis
would lead us to estimate those factors.

8. EXPECTED VALUE

Whatever value we argue MBD provides, before it can pro-
vide that value a failure must occur, the MBD system must
correctly diagnose the failure and it must suggest a useful re-
sponse. Thus, we can decompose the likelihood of providing
value into the likelihood of each event in this sequence. The
expected value of doing diagnosis is therefore:

Vmbd = Pf ∗ Pd ∗ PR ∗ Vr∗

where
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NetV alue = Vmbd − Crisk − Cdep (1)

NetV alue =

Vmbd︷ ︸︸ ︷
Vr ∗ Pf ∗ Pd ∗ PR−

Crisk︷ ︸︸ ︷
Pcf ∗ Ccf −

Cdep︷ ︸︸ ︷
Cm + Ca + Ctest + Cr (2)

Figure 3. The (tongue-in-cheek) Kurien-Moreno Equation

• Pf = likelihood of a failure actually occurring (≤ 1)
• Vr = value having a diagnosis and response that’s auto-
matic (timeliness, reduced operations cost)
• Pd = likelihood of correctly diagnosing the failure that ac-
tually occurs (≤ 1)
• Pr = likelihood of providing proper response (≤ 1)

Let us consider the value provided during non-critical opera-
tions. In this case, we consider the value of having on-board
diagnosis and recovery, Vr, to be equivalent to the number of
days of operations that would be lost waiting in safe mode
if we did not have on-board recovery. We would expect Pf ,
the rate of occurrence of failures within on-board spacecraft
systems to be quite low in general. This is important because
the product Pf ∗ Vr, the expected amount of time the space-
craft spends in safe mode, is an upper bound on the value of
on-board recovery, representing the ideal the case where our
MBD system is infallible and completely trusted. This is sim-
ply the nature of attempting to provide value with diagnosis
systems.

To provide a concrete example, Table 2 summarizes Nelson’s
excellent overview of the anomalies in MER operations that
occurred in the first two years of commanding two rovers on
Mars. The first column is a short name we have given to the
anomaly. The second denotes whether the problem was due
to software, hardware or interactions with the environment.
We presume that most MBD applications apply to hardware
and software failures, not dynamic interactions with the envi-
ronment, though this is incidental to our analysis. The third
column denotes how many days passed between when the
anomaly occurred and the subsystem involved in the anomaly
was put back in to routine operations. Note in many cases
other non-effected subsystems were put back in to operation
sooner. The final column describes what response was devel-
oped by the MER anomaly analysis team.

This table captures the anomalies that caused the two rovers
to enter a fault response during approximately 1550 days
worth of rover operations. The small number of hardware and
software related anomalies suggests that Pf is quite small.
The amount of time spent on anomaly recovery was about
2% of the operational time, including a significant amount
of time responding to environmental problems such as being
stuck in soft sand. Thus for MER we know the product Pf ∗Vr

turned out to be 2% of the operational time of the rover. This
represents the ideal upper bound of the value of using MBD
to achieve fail operational during routine operations if every
anomaly could be resolved autonomously on-board.

The remaining terms, Pd and Pr, will dictate how far we
are from that ideal return, and represent the likelihood that
a MBD system will correctly diagnose and recover from the
failures that occur during operations. Looking at the failures
in Table 2 the first question to consider is out of the enormous
space of component failure modes, what is the likelihood that
a priori our models would have covered diagnosis and recov-
eries for these failures? The second question is, what is the
likelihood that our automated software would have produced
recoveries that were both correct and more valuable than sim-
ply shutting down subsystems and waiting for ground analy-
sis as the existing MER system does? Since MER did not use
an on-board MBD system, discussion of Pd and Pr may be
considered conjecture. We believe one can get a sense of the
(small) magnitude of Pd and Pr by looking at the amount
of time that the engineers who built the rover, flight soft-
ware and operations system spent carefully probing the rovers
with small experiments and deriving a recovery and new op-
erational policy that would accommodate the failure and the
rover’s interaction with the environment. We believe that the
MER pattern of infrequent, short bursts of extremely care-
ful analysis indicates Vmbd would be significantly less than
adding 2% to the rovers operational time.

We briefly consider the much shorter Livingstone flight ex-
periments. No real spacecraft failures were diagnosed dur-
ing two day Livingstone flight experiment or the 143 day L2
flight experiment, so it’s difficult to measure the value. Two
failures in experiment-related software did occur during and
interfere with the flight experiment of Livingstone on DS1.
One failure we had not even considered modeling, and the
other was explicitly declared out of scope during the model-
ing effort. Therefore the only two actual failures known to
have occurred during a Livingstone flight experiment were
not recovered from [5]. This again suggests Pf , Pd and Pr

are not terribly high.

This leaves Vr, the value that using Livingstone could provide
if failures did occur and Livingstone covered them properly.
It is interesting to note that the engineering of the DS1 Liv-
ingstone model was carried out by understanding what the
appropriate recovery was, then developing a model that cap-
tured it. For example, if the spacecraft flight software re-
ported the pointing of the spacecraft to be inaccurate, Living-
stone would diagnose which thruster was stuck, and simply
change to a second control mode that used different thrusters.
Of course, the flight software was computing the error and
presumably could switch control modes when the error in the
current control mode was significant. Ironically, during the
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experiment the error tolerance used to trigger Livingstone’s
response had to be tuned lower than that used by the DS1
flight software, to ensure that if a real failure occurred, the
flight software wouldn’t correct for it before Livingstone had
a chance to do the component-level diagnosis and offer a re-
covery. Thus we fear Vr for the Livingstone application on
DS-1 would offer little above the existing flight software even
if failures had occurred and had been diagnosed. So we again
we find it difficult to argue how for the Livingstone flight ex-
periments, Vmdb was significant.

In general, we believe Pf is low for operational spacecraft,
meaning even the potential benefit for MBD is limited. In
addition, for the types of potential applications we are famil-
iar with, failures that do cause loss of operational time are
typically complex and unexpected. Consider failure of the
Galileo antenna to deploy or the MER rover rebooting due to
flash problems. They typically require detailed analysis, cre-
ativity and validation before returning the spacecraft to an op-
erational state, further lowering the expected value of MBD.
Situations where combinatorics rather than deep knowledge
is the issue, as was initially encountered in Cassini’s 27 valve
propulsion system and its 227 configurations, do not appear to
be the driving problem in spacecraft fault protection. Thus for
the missions we’ve considered in detail (all unmanned, deep
space missions) we would assign a low expected value to the
use of MBD. We next consider risk and cost.

9. RISK

Initially, we imagined that MBD would reduce risk of mis-
sion loss by generating diagnoses and recoveries on the fly
and increasing the range of situations over which specialized
fault responses were available. In retrospect customers were
concerned with increased risks, some of which are described
below, that could arise from the use of MBD. We can think
of the expected cost due to additional risk of using an au-
tonomous MBD system as

Crisk = Pcf ∗ Ccf

where

• Pcf = likelihood that more complex response of the MBD
system will itself cause an anomaly or compound the failure
• Ccf = cost of resulting anomaly in terms of lost science,
extra operator time, loss of mission capabilities

In order for MBD systems to have an impact, one key would
be to reduce Crisk to a level the mission customer is comfort-
able with. We can divide sources of perceived risk into three
categories: increase in Pcf due to the fact that the MBD sys-
tem is capable of a wider range of responses and generates
them on the fly, increase in Pcf from continuing to operate
after an anomaly when not strictly necessary, and increase in
Ccf if the actions of an autonomous on-board recovery sys-
tem must be mitigated when the spacecraft has ceased operat-
ing according to design and the ground team must intervene.

Missions considered that MBD would increase Pcf because
of the increased complexity of the software’s response and
our inability to concisely characterize, enumerate and vali-
date the range of diagnoses and responses the system might
undertake. Rather than engineer a small number of safing
responses that are as broadly applicable as possible, MBD
seeks to generate recovery reponses that are as specialized as
possible on the fly. It’s interesting to note that this does not
necessarily imply that an MBD system responds to a broader
range of anomalies, simply that it responds in a more spe-
cialized fashion to each. This means there are far more vari-
ations in spacecraft response based on its state, and the full
set of conditions and responses could not be enumerated and
tested. In addition, the purpose of MBD is to propagate in-
formation across the modeled system to allow variations in
response. Thus it can be difficult to even concisely describe
how small, non-local variations in the space of inputs will im-
pact the response, and difficult to argue that a specific set of
test cases provides good coverage for validation. Combating
this perceived increase in Pcf is a challenge since the abil-
ity of MBD to respond with a far wider range of behaviors
than traditional fault protection is both its selling point and
the source of concern that the system will do something un-
predictable. Some work has been done to apply model check-
ing approaches [24], but this remains a significant issue for
adoption.

An additional increase to Pcf comes from the desire to con-
tinue to operate the spacecraft via a recovery generated on-
board when it is possible to safe the spacecraft and await
expert analysis. Consider the three wheel problems of Ta-
ble 2, Wheel drive actuator, Rock stuck in wheel, and Stuck
in sand. One can imagine mis-diagnosing which failure was
occurring and applying the recovery meant for another (e.g.,
attempting to drive in circles when stuck in sand rather than
when a rock is in the wheel) could permanently trap or dam-
age the rover. We don’t have examples of Livingstone mis-
diagnosing a spacecraft failure as no failures occurred during
the flight experiments, but we do have examples of false pos-
itives (indicating a failure when none exists) during the EO-1
experiment. Thus it’s important to keep in mind that MBD
may cause us to execute actions that are inappropriate for the
true state of the spacecraft. This increase in Pcf though the
possibility of exacerbating a failure through continued opera-
tion rather than safing is one of the items we are asking mis-
sions to trade against Vmbd estimated in the previous section
in order to justify MBD.

Note the cost Ccf is not just potential loss of mission. Hav-
ing specialized, generated responses to anomalies may make
it harder and more costly to determine what exactly the space-
craft believes it is doing should something go wrong and mis-
sion controllers need to intervene. This is hard to charac-
terize exactly, as we don’t have good examples of a model-
based fault protection system resolving an anomaly in oper-
ations, or of it needing assistance or intervention from the
ground. We experienced a little of this in the Remote Agent
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Brief Days of
Description Type Analysis Recovery process
Wheel drive actuator HW 4 Experiment to characterize capability of wheel

Warm actuator before use
Drive backward dragging wheel

Steering current HW 4 Experiment to characterize source of current increase
Use ’K’ turns to avoid steering failed wheel

Shoulder actuator current HW 17 Experiment to characterize shoulder motor degradation.
Characterization of future arm failure on driving
Change stowage policy to minimize thermal cycling & forestall failure

Heater stuck on HW ∗ Determine that survival heater was stuck on
∗ Operations continued while problem was addressed
Implement policy to remove batteries from power bus at night
Rely on solar power to wake rover at dawn
Trade off power savings vs. degradation of instrument due to cold

Late wakeup/dust storm Env 1 Solar panels woke up rover slightly late due to dust storm
Rover missed time to start sequence, waited in standby mode
Plan future sequences to start at least 1 hour after expected wakeup

Rock stuck in wheel Env 7 Current spike explained by seeing rock in the wheel in imagery
Several days of careful driving to dislodge rock

Stuck in sand Env 40∗ Imagery suggests rover is not moving, wheels 70% buried in sand
∗ Continue all non-drive activities on Mars during analysis
Set up testbed with similar consistency soil, practice escape strategies
Carefully drive out using escape strategy
Augment driving policy to avoid wheel embedding on future drives

Flash file system anomaly SW 14 Overloaded file system table prevents creation of new files. Rover continously reboots.
Understand what on-board fault protection system is doing, what is causing reboots
Send command to rover to start up without file system, gain control of rover
Determine issue with file system. Clear and rebuild file system
Carefully manage production of files. Return to nominal ops. Later upload patch.

Race condition during startup SW 2? Lose comm window every few hundred sols
Added short activity keep out period after startup

Imaging race condition SW 2 Imaging HW shut down while sequence still reading data from HW
Shut down sequence fixed to halt imager sequence before HW shut down

Corrupt command SW 6∗ Solar conjunction test of corrupt commands overloads command handler
∗Normal commanding resumed after solar conjunction over

Variable evaluation exception SW 4∗ Same global defined in two sequences running in parallel, result in fault
∗ Includes idle weekend. Do not run two scripts that define same global

Upload fault SW 2 Initial uplink through orbiter experiment overloaded CPU
Pad uplink file, limit size

Table 2. MER Anomalies

Experiment, due to actual, non-diagnosed anomalies during
the experiment [25]. It may be better to consider how diffi-
cult it is to debug anomalies from millions of miles away with
(comparatively) simple safing and recovery actions, as in the
FLASH anomaly in the Spirit Mars rover [13].

For the flight experiments of Livingstone and L2 on DS-1
and EO-1, the flight software of each spacecraft included a
complete, separate fault protection system which protected
the spacecraft. On DS-1, for example, the spacecraft’s flight
software included a fault protection system that monitored the
spacecraft for indications that any occurrence, including com-
mands given by Livingstone, were putting the spacecraft in a
risky situation. The fault protection system would then stop
all commanding of the spacecraft and put the spacecraft into
a safe mode to await contact from mission controllers. In ad-
dition, Livingstone’s communication with the spacecraft was
done through a filter which ensured only specific commands
which had been analyzed for safety could be sent from Liv-
ingstone to the spacecraft. If the underlying fault protection
system were activated, that filter would be completely turned
off and Livingstone would be terminated.

In an unforgiving environment such as space, Livingstone’s
ability to provide novel diagnoses and recoveries to failure
combinations we had not explicitly considered was far less
important than being able to verify exactly how it was go-
ing to respond in the most likely and most critical anomaly
situations. Guarding an MBD system with a traditional fault
protection system and restricting the commands it can give
is one approach to bringing it to the level of predictability
needed to convince mission stakeholders the spacecraft will
not go in to an unsafe state. This strategy was appropriate
for experiments whose purpose was to show the technology
could be flown. In routine operations, it would tend to under-
mine the cost and value arguments of using MBD. If MBD
technology, or to an extent, any autonomous on-board tech-
nology, were to make an impact on operations, we believe
this open question of predictability, validation and risk must
be addressed regardless of what the proposed value is.

10. COST

In initially thinking about the cost of model-based diagnosis
systems during DS-1 development, the focus was largely on
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the cost of developing a model of the spacecraft for the MBD
system. A more complete picture of the deployment costs,
Cdep can be thought of as follows:

Cdep = Ca + Cm + Ctest + Cr

where

• Ca = cost of analysis needed to develop the MBD system
• Cm is the cost of developing models for the failures and
recoveries the MBD system will cover and integrating the
model
• Ctest = added or reduced cost of verification and testing
• Cr = amortized cost of research and development of these
systems

Roughly speaking, by Ca we mean the cost to determine what
should be modeled and how, where by Cm we mean the actual
effort required to implement the models and integrate them
with the spacecraft. Here we expected a substantial advan-
tage over versus the cost of writing a fault protection system
and doing all of analysis to determine the correct response
to critical, mission ending anomalies. We would thus expect
substantial pull from missions, which are always under cost
pressures, to use MBD technologies. In this section, we con-
sider why that was not the case.

We first consider Ca and why we believe use of MBD has
not produced a drop in analysis costs. We imagined future
missions might use the ability of model-based diagnosis to
propagate behavior of individual components across a sys-
tem model to generate recovery responses on the fly or before
flight, meaning the analysis costs of a mission using MBD
would drop. Two issues are where the models come from and
what analysis do they eliminate? First model-based diagnso-
sis requires a diagnostic model which is somewhat different
than the simulation models used in routine spacecraft devel-
opment. The DS-1 experience was that it’s necessary to know
the aspects of each component relevant to failure, the plau-
sible failures to be modeled, how they manifest themselves
locally, and so on in order to scope and write a model. Thus
we expect FMECA analysis would continue to drive model-
ing, rather than a model existing through some other process
and then being used to replace analysis.

Second, MBD is not equivalent to fault protection, so we
don’t expect the model for the former to eliminate the anal-
ysis for the latter. Fault protection is a system engineering
process that impacts the design of hardware, software and
operational procedures. It must ensure, for example, if any
hardware, software, environmental or operational problem is
draining the spacecraft’s batteries, the combined hardware,
software, and operations system has the maximum likelihood
of stabilizing the situation before the vehicle is lost. This is
a much broader problem than that of on-board component-
level diagnosis and reconfiguration of the spacecraft. In ad-

dition, the need for component-level diagnosis typically not a
driver. For example, the fault protection design might place
all non-essential devices on a separate power bus, which is
simply turned off if there is any power-related anomaly. Thus
in the flight experiments, it was still necessary to employ a
fault protection system which did not need to do detailed di-
agnosis, while running Livingstone, which did not perform
system fault protection. Since the Livingstone models do not
address system fault protection, we don’t expect the models
to provide a significant drop in analysis costs for developing
the basic fault protection capability missions require.

We also believe that use of MBD intrinsicaly drives analysis
costs up. First, the main value we ascribed to MBD was that
it would do detailed diagnosis and recovery autonomously.
This means the analysis and modeling needed to diagnose and
recover failures, and the non-trivial task of encoding those
capabilities into software, must be done a priori, before we
know which failures will occur. Thus we may perform the de-
tailed analysis and modeling needed to automatically recover
for many faliures that never occur. In contrast, the traditional
fault protection strategy only performs this kind of detailed,
a priori analysis for critical sequences and the process for
safing the spacecraft. The majority of possible faults simply
trigger the safing system without being diagnosed to the com-
ponent level. The analysis is then done post hoc for only those
failures that actually occur, and without the need to codify
the diagnosis into a model. Second, during non-critical peri-
ods the fault protection scheme typically identifies only faults
(e.g. the battery voltage is too low) which can be used to find
a pre-planned response that is meant to cover a huge space of
problems induced by the hardware, software or environment.
An MBD system requires a more broader model in able to
perform component level diagnofsis. Finally, to generate re-
coveries, the MBD system must model some of the nominal
behavior of the system as well.

With respect to Cm, once the analysis is done to determine
what level of detail must be modeled and what failures should
be covered, modeling is often relatively easy. There may be
cases where representing a particular failure or getting the
appropriate recovery to be inferred may be tricky for a given
modeling language and diagnosis approach. A second source
of cost is integrating the model with the spacecraft. Signals
generated by the spacecraft’s internal sensors may need to be
conditioned so that transient disturbances do not cause false
positives in the diagnosis system, or they may be abstracted
from real values to trends or qualitative ranges to match the
diagnostic algorithm. The Livingstone experience is this can
represent at least as much work as modeling. Livingstone is
attempting to autonomously infer the failure within individual
components and do so preferrably before they cause a system
level fault such as a battery undervoltage. Thus we believe
signal conditioning and integration costs are higher than for
fault protection systems that typically look at a smaller num-
ber of system-level measures and are inferring a less detailed
estimation of the spacecraft state.
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With respect to Ctest, one of the main characteristics of Liv-
ingstone is the ability to generate combinations of diagnoses
and recoveries from the possible diagnoses and recoveries
for individual components. However, it was still necessary
to work through the possible failures, how the failure would
propagate through the system, and how Livingstone would
respond, then validate the expected behavior through testing.
Given the space of possible responses Livingstone could gen-
erate, the issue of how to validate it at a reasonable cost if it
were to be run as an operational system were an issue during
flight and remain an issue.

As a point of interest, Table 1 lists approximate development
costs for Livingstone applications where it was possible to
make an estimate. On the Deep Space 1 experiment, three
people worked part time for a total of approximately thirty
six person-months developing a model of 5 subsystems of the
spacecraft. Approximately 96 person months were spent in-
cluding the model and all of the integration and sensor signal
conditioning necessary to run on-board the spacecraft. For
the Earth Observer 1 experiment, a total of 2.8 person-months
were spent modeling and approximately 12 person months
was invested in integration and signal conditioning. It’s im-
portant to note that these figures are not the cost of the fault
protection system, as Livingstone alone was unable to pro-
vide fault protection for the spacecraft. These are the costs to
develop a diagnosis and recovery system for combinations of
failures in specific subsystems.

In summary, we believe use of Livingstone and similar tech-
nologies does not eliminate or appear to reduce the need to
perform analysis for fault protection. The need to develop
a separate set of component-level diagnostic models adds
cost, and does not significantly offset fault protection anal-
ysis costs. The desire to have, a priori, a system that can
autonomously diagnose and recover a spacecraft appears to
introduce additional detailed analysis, model encoding, sig-
nal conditioning and testing that is not necessary if the space-
craft is simply put in a safe mode when possible. We believe
the approach is also at a cost disadvantage due to the more
complex testing and verification requirements necessary to
ensure any of the additional diagnoses and novel recoveries
Livingstone might come up with during autonomous opera-
tions would not endanger the spacecraft.

11. CONCLUSIONS

In this paper we have discussed the expectations for model-
based diagnosis and recovery systems such as Livingstone
and why we believe not all of those expectations were met.
We attempted to lay out the basic cost/benefit drivers in a do-
main of interest (unmanned spacecraft) and our understand-
ing of why model-based diagnosis as well as recovery have
found relatively little traction.

We can grossly characterize the common practice in fault pro-
tection to be identifying those contingencies where an active,
specific response to anomalies must be made (e.g., loss of a

motor during an orbital insertion) and providing identification
and response to those states. In other anomalous conditions,
the spacecraft is safed and engineers diagnose the problem
post hoc. For the missions we’ve considered, this approach
seems to provide lower risk and more than adequate value
in terms of anomaly response when compared to MBD. In
addition we have not yet developed or seen an argument or
demonstration that the total analysis, development and test-
ing cost for the common practice is higher than an alternative
based upon MBD.

During non-critical mission phases, the net value of having
on-board diagnosis and recovery is low since we are free to
simply put the spacecraft into a safe mode and only then
invest resources attempting to find a diagnosis or response.
During critical phases (as well as non-critical) the real need
to circumscribe and validate the responses of the fault protec-
tion system decreases the proposed value of MBD’s ability
to generate novel responses, while increasing its testing and
analysis costs in an attempt to contain risk. We also believe
the key questions of how on-board, component-level diagno-
sis fits in with and adds value to the broader task of fault pro-
tection engineering, and how MBD technologies would re-
duce fault protection costs remain open. Thus at least for the
type of missions with which we are most familiar we believe
it is difficult to justify the use of on-board, generative diag-
nosis and recovery systems like those we have been involved
with based on cost, risk or value.

This is not to say there aren’t ways to make MBD more at-
tractive to missions. One theme is to use MBD to assist in
ground-based diagnosis and recovery. As with the Eureka
system described in Related Work, we do not have a satisfac-
tory argument of how a model-based diagnosis system would
assist domain experts in the kind of unanticipated anomalies
that they find challenging. This may change however if do-
main experts are not available, or if the system has become so
complex a realistically sized group of experts cannot diagnose
it without system-level inference tools. Alternatively, it may
be possible that focusing model-based diagnosis technology
on both the design process and on-line diagnsosis could lead
to greater success, as suggested by the TEAMS and TEAMS-
RT systems in Related Work. We believe a similar analyis
of the expected and actual impact of these or any other ap-
plications of model-based diangosis technology would be of
interest to potential customers, advocates and developers.

For potential customers of model-based diagnosis or other
similar technologies, we hope this paper might inspire ways
of thinking about the effective value to a project or mission.
For advocates, we hope this paper might gather common criti-
cisms of model based diagnosis technology into specific cate-
gories which can be addressed through research and develop-
ment or rebutted through counter-examples or demonstration.
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12. RELATED WORK

In this section we discuss a small set of systems that are
model-based, or pertain to diagnosis and recovery, or have
been fielded in operational use, our ultimate interest being a
system that is all three.

There are many commercially successful diagnosis applica-
tions. For example, every car sold in the United States since
1996 is required to comply with the On-Board Diagnostics II
(OBDII) standard, which specifies a set of onboard tests and
makes diagnostic information available to off-board diagnos-
tic systems. Some vehicles are even able to perform some
amount of active testing, and have a “limp home” mode when
sensors or engine control actuators are suspect [26]. How-
ever, what we are specifically interested in is systems that
generate diagnoses on-line, based on some generic engine
or set of principles plus a domain description of some sort,
rather than systems where engineering analysis is encoded
into static code or a table representing a recovery policy.

Researchers at Xerox PARC developed a model-based system
for planning and scheduling print jobs within reconfigurable
high Xerox end printers [27] that has been used in Xerox
products since 1995. Engineers developing new variations
of the machines write constraints between the sheets of paper
and components in the printing process, and do not explicitly
write a schedule or scheduling software for the machine. For
each print job, a model-driven scheduler within the printer
develops a schedule that is optimal for the job characteristics
and the constraints imposed by the components available in
the machine. This represents a commercially successful de-
ployment of model-based reasoning, but does not appear to
include any diagnosis, recovery or handling of anomalies op-
eration of the machine.

Researchers at PARC did develop a model-based diagnosis
system for copiers[28] with the intention of deploying it on
laptops to assist field technicians responsible for diagnosing
and repairing copiers. After being presented to technicians,
the system was not deployed and a community knowledge
sharing system, Eureka was deployed instead [11]. To para-
phrase the Eureka paper, the model-based diagnoser was not
deployed because technicians knew how to identify and cor-
rect common faults, and small optimizations in that process
were not of high value. The real issue was unexpected is-
sues that were not forseen during the design of the machine
or development of the diagnostic models. These might arise
from operating the machine in extreme environments, unin-
tentional interactions in components in a newly released de-
sign, unanticipated failure modes as the machines age, and
so on. Thus, after a study of the technicians’ work process
Eureka did not attempt to augment or replace the expert tech-
nicians’ ability to perform diagnostic reasoning. Eureka is
a knowledge management system that allows technicians to
exchange tips on new faults, diagnoses and responses as they
are created in the field, the success of which can be judged by
its 20,000 users.

Researchers have developed a real-time model-based reason-
ing system for the RASCAL flight research aircraft (the UH-
60 Helicopter) [29] based on the TEAMS and TEAMS-RT
systems [30]. Given a model of signal propagation between
components and the placement of sensors within a system,
TEAMS performs off-line testability analysis to analyze and
quantify which component failures can be detected and which
can be further isolated, as well as making recommendations
to improve testability. TEAMS has been used for testabil-
ity analysis of several large aerospace systems. TEAMS-RT
uses the same model to determine which components may be
failed from pass/fail outcome of sensor tests. We were unable
to find references indicating whether TEAMS-RT has been
used thus far in a fault protection system or ground-based di-
agnostic aid during baseline aerospace operations. Our con-
jecture is that TEAMS-RT would enjoy a reduction in model-
ing cost relative to Livingstone-style inference, especially if
TEAMS were used for design-time testability analysis. How-
ever, we suspect the question would remain about what value
model-based, component-level diagnosis provides if the do-
main has infrequent, unanticipated failure scenarios, the need
for carefully crafted recoveries, and experts available to per-
form diagnosis.

The very successful Cassini mission, whose main propulsion
system was later used as a benchmark problem in develop-
ment of Livingstone, made use of a very capable rule-based
fault diagnosis and recovery system in operations [31], [14].
That is, through a FMECA process, the set of critical fail-
ures, the symptoms or monitored sensor values that would
result, and the appropriate responses were derived. These
mappings from monitored values to diagnosed states were
encoded in rules. The appropriate commands to respond to
each state were similarly encoded. For situations that could
not be mapped directly from the sensor states to a diagnosis,
the spacecraft would temporarily be set to a simple, safe state
then the spacecraft would execute a sequence of commands
designed to reveal the problem or move the spacecraft from
the safe state to an operational state.

The EO1 [21], 2003 Mars Exploration Rovers[32], 2007
Phoenix Mars Lander [33] and 2009 Mars Exploration
Rover [33] all used or are preparing to use model-based plan-
ning and scheduling software in routine operations. Thou-
sands of daily operational plans have been generated for the
Mars Exploration Rovers, and Casper planner was the basis
of a low cost mission extension for the EO-1 spacecraft. We
believe some of the differences in impact between the con-
ceptually similar technologies of model-based planning and
model-based diagnosis can be put into the context of our anal-
ysis. First, the likelihood of the system being called into use,
Pf in our analysis, is 1.0 in the planning case, as the plan-
ner is typically used to generate plans for routine operations.
Contrast this with the diagnosis system, where Pf is the prod-
uct of the likelihood of each failure and the likelihood that the
failure was a priori covered by the diagnostic model. Second,
based on our experience with diagnosis and planning, the cost
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of modeling, Cm, is lower for planning. The planner model
concerns only nominal operations of the spacecraft, which
is typically well understood, often well documented, and in
some cases can be translated into a model from existing mis-
sion artifacts [33]. Compare this with model-based diagno-
sis, where the modeling task is to write a set of models that
capture, again a priori, a set of relevant failures and how the
failure signals are propagated across the system once it stops
behaving according to its nominal model.

A number of analytic approaches exist for examining the
cost/benefit tradeoffs of Integrated Vehicle Health Manage-
ment (IVHM) or Integrated System Health Management
(ISHM) technologies [8], [9], [10]. IVHM is broader and
somewhat orthogonal to model-based diagnosis and recovery
as we have considered it, in that IVHM is typically concerned
with all aspects of supporting operations of one or a fleet of
systems. The focus of IVHM is typically on increasing op-
erational availability and reducing maintenance and support
costs, with somwhat less emphasis on on-line diagnosis of
an operational system to allow it to continue a specific sortie
or mission. Williams for example describes a discrete event
simulation that can compute different quantitative measures
of effectiveness such as missions completed or number of
vehicles in maintenance in a given period [8]. The tool is
aimed at analyzing the sensitivity of various operational con-
cepts to given assumptions about the performance of various
IVHM capabilities. This paper suggests a very similar, less
mature but potentially more specialized method for for eval-
uating model-based diagnosis specifically. It also focuses on
how assumptions about performance and the customer’s op-
erational model (the input to these analysis methods) led to
over estimating the impact of model-based diagnosis and re-
covery, and what factors in hindsight might have allowed a
more accurate cost/benefit analysis.
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